

RESCON 2 Analysis

Nikolaos Efthymiou nefthymiou@worldbank.org Rapid assessment of sediment management alternatives

Objectives

Rapid assessment of sediment management alternatives Screening of state-of-the-art techniques

Ranking of most promising for further studies

Consideration of intergenerational value of storage through incorporated declining discount rate

Sediment management as adaptation to climate change

- The RESCON 2 model is a computer program designed for use in pre-feasibility studies with limited and readily available site specific data.
- The RESCON 2 analysis is based on empirical methods.
 It is not a substitute for more detailed studies with numerical and/or physical models based on data collected during field measurement campaigns.
- **Sound engineering judgment** is required for interpretation of the results.
- Synergies developed in reservoir cascades are not considered.
- It's not possible to analyse sediment management strategies involving different techniques applied simultaneously

Timeline of development

1999-2003

Development and release of first version of RESCON

2003-2015

- Extensive worldwide application of RESCON
- Stronger need for storage preservation
- Impact of Climate Change on reservoir sustainability
- Scientific advances in sediment management and economic analysis

2015-2017

Revision and upgrade of RESCON

RESCON 2 beta

2019 – 2020

Global sediment management study

Design guidelines Technical toolkit including RESCON2 and numerical model

Download

https://www.hydropower.org/sediment-management/resources/tool-reservoir-conservation-model-rescon-2-beta

https://www.hydropower.org/tools

WORLD BANK GROUP

FICHTNER

Questions answered by RESCON 2

• Does sediment management improve the economic performance of the reservoir?

Is sediment management technically feasible?

What sediment management strategy converts a reservoir from a non-sustainable to a sustainable resource?

What is the lifetime of the reservoir if no sediment management is applied (No action scenario)

Can sediment management increase resilience of water infrastructure to climate change?

Theoretical background

34954 v 2

June 2003

VATION OF WATER STORAGE ASSETS WORLDW

Alessandro Palmieri - Farhed Shah George W. Annandale · Ariel Dina June 2003 ION TO PROMOTE CONSERVATION OF WATER STORAGE ASSETS WORLDWID

Extending the Life of Reservoirs

George W. Annandale, Gregory L. Morris, and Pravin Karki

WORLD BANK GROUP

RESCON 2 User Manual

Reservoir Conservation Model RESCON 2 Beta

Economic and Engineering Evaluation of Alternative Sediment Management Strategies

Nikolaos P. Efthymiou, Sebastian Palt, George W. Annandale, Pravin Karki

WORLD BANK GROUP

FICHTNER

Capabilities

Sedimentation prediction

- Time Path
- Spatial pattern Allocation of deposits in active and inactive storage

Evaluation of sediment management techniques

- Catchment management
- Sediment routing
- Deposit removal
- Multiple management techniques

Economic appraisal

- Firm water yield
- virtues of intergenerational equity and sustainable development

climate change analysis

• Vulnerability - Resilience analysis - adaptation strategy to climate change

Analysis flowchart

Sedimentation assessment

950,000

ΣDep i

50,000

Sediment release

from reservoir)

EL_{owl} $\mathsf{EL}_{\mathsf{b1}}, \mathsf{W}_{\mathsf{a1}}, \mathsf{W}_{\mathsf{d1}}$ **EL**_{mwl} Star1, TE1 EL_{b2}, W_{a2}, W_{d2} Sin 1 = MAS St_{ar1} = 300,000 m³ St_{gr2}, TE₂ $TE_{1} = 60\%$ EL_{b3}, W_{a3}, W_{d3} $S_{in_2} = S_{out_1}$ $St_{gr2} = 600,000 \text{ m}^3$ TE₂ = 60% St_{gr2}, TE₂ S_{in_3} = S_{out_3} St_{gr2} = 800,000 m³ TE₃ = 90% St_{gr res}, TE res MAS = 1,000,000 m3/a St_{gr_res},= 1,700,000 m³ TE_res = 95% Maximum allowable annual depositions = 950,000 m³ (1)(2)(3)Compartment Sediment Inflow in S_{in i} 700.000 m³ 1,000,000 m³ 210,000 m³ Compartment (Mean Annual Sediment inflow in reservoir) (Sediment release from compartment 2) (Sediment release from compartment 1) Compartment's Trap TE 60% 70% 90% Efficiency Potential deposits in Dep_pot_ 600.000 m³ 490.000 m³ 189.000 m³ (S_{in 1} x TE 1) (Sin 2 x TE 2) (Sin 3 x TE 3) the compartment **Total deposits** Dep, 950.000 m³ 650.000 m³ 160.000 m³ (TE_res x MAS) (TE_res x MAS-dep_1) limitation (TE_res x MAS-dep_1-dep_2) St_{ar} Compartment 300,000 m³ 500.000 m³ 800.000 m³ Storage limitation (available compartment storage St (available compartment storage Star2) (available compartment storage Stara) Dep Deposits in 300,000 m³ 490,000 m³ 160,000 m³ compartment i Min {Dep pot i, Dep max i, Stor i] Min {Dep pot i, Dep max i, Star i Min {Dep pot i, Dep max i, Stgr i} Sediment Release S_{out i} 700.000 m³ 210.000 m³ 50.000 m³ from compartment i (Sin i - Sout i) $(S_{in,i} - S_{out,i})$ (Sin i - Sout i)

Allocation of deposits in active and dead storage

Method

Van Rijn (2013)

Schematization of reservoir geometry in compartments Wide applicability

Trap Efficiency

Bedload: 100%

Suspended load

Brune

Borland

Calibration of the model is possible

Sediment management assessment

Palette of assessed sediment management techniques

Economic appraisal

Annual revenues

Firm water yield xUnit Rate[m³/a][\$/m³]Gould-Dincer methodUser defined

Function describing relationship between:

- dimensionless yield *
- Reliability
- hydrologic variability (Cv)
- reservoir active storage.
- * **Dimensionless yield:** the amount of water that can be annually supplied from a reservoir with a given storage at a specified reliability normalised by the mean annual flow in the river.

Catchment management assessment

Input

- Reduction of sediment inflow due to catchment management (bedload & suspended load)
- Timing
- Cost (implementation and maintenance)

Phases

- 1st: No action
- 2nd: Catchment management is implemented but its impact on sediment inflow is not yet apparent
- 3rd : Reduced sediment inflow due to catchment management

Optimized Parameters

Timing of implementation year (duration of 1st phase)

Economic appraisal

1. Annual revenues

Firm water yield x Unit Rate

[m³/a]

[\$/m³]

Gould-Dincer method

User defined

2. Costs

- CAPEX
- Regular annual O&M costs
- Sed. management implementation costs
- O&M costs for sed. Management
- Decommissioning cost

3. Net Present Value

Fixed discount rate.

Declining discount rate

Climate Change Analysis

Source: Annandale, G. (2015)

Climate Change Analysis

Climate Change Analysis

 Assessment of reservoir sedimentation process (timepath, allocation of deposits in active and dead storage, partitioning between bedload and suspended load)

 RESCON 2 evaluates the performance of the state-of-the-art sediment management techniques.

 The declining discount rate incorporates the intergenerational value of storage in the analysis.

Assessment of sediment management as adaptation strategy to climate change

RESCON 2 Analysis

Application Example

Measured sedimentation

Comparison prediction - measurement

THE WORLD BANK

BRD . IDA

Questions

What will happen if no sediment management is applied?

- 1. What is the lifetime of reservoir?
- 2. How does trap efficiency develop over time?
- 3. What is the Net Present Value of the No Action Scenario?
- 4. What are the risks associated with storage elimination?

Questions

2. Assessment of sediment management countermeasures

- 1. What is the development of reservoir storage?
- 2. Is the reservoir sustainable?
- 3. What is its long term capacity
- 4. What is the Net Present Value for the selected strategy?
- 5. Can the economic performance of the reservoir be optimized?
- 6. What is the sensitivity of the economic performance on discounting concept?

3. What is the impact of climate change on performance of reservoir

- 1. What is the full range of possible future climates, which representative future climates would you select?
- 2. What is the vulnerability of the reservoir for the case of no action
- 3. What is the performance of the reservoir for the representative climate futures if the selected sediment management strategies are applied
- 4. What sediment management method leads to the most robust reservoir behavior?

Back-Up

Sluicing assessment

The hydrological year is partitioned into two periods

- Normal operation
- Sluicing (Water level drawdown)
- The waterlevel drawdown determines the reduction of trap efficiency during sluicing (Efficiency)

Sluicing operation

By-Pass assessment

Description

The hydrological year is partitioned into two periods

- Normal operation period (By-Pass out of operation)
- By-Pass period (Diversion of water and sediment inflow through by-pass structure)

Indicative results

THE WORLD BANK

Graphical User Interface

Graphical User Interface

Annual sedimentation and removed deposits by flushing

Results Reservoir Storag Trap Efficiency Removed Deposits Water Yield Cost-Benefit Streamflo Net Present Valu

Finished Finished

- O -X

Years of operation

Flushing

——Catchment Management

- Density Current Venting

— No Sediment Management

By-Pass

ished Finished

Gross Storage Active Storage Trap Efficiency Water Yield

- Comparison of sediment management techniques.
 - Gross and active storage
 - Trap efficiency
 - Firm water yield
 - Net Present Value of **Benefits**

Specification of reservoir geometry

eometry

Basic geometrical features of reservoir

Reservoir Geometry User Input Parameter Units Value Description [m³] Original gross storage capacity of the reservoir 148,000,000 So_gr Original active storage capacity of the reservoir 46,000,000 [m³] So_a 102.000.000 So_d Original dead storage capacity of the reservoir [m³] Existing storage capacity of the reservoir Se_gr [m³] Se_a [m³] Existing active storage of the reservoir Existing dead storage of the reservoir Se d [m³] Wbot Representative bottom width of the reservoir [m] 100 **ELOWL** [masl] Normal pool elevation of reservoir 231.0 ELMWL 224.5 [masl] Minimum pool elevation Elbmin Minimum bed elevation 100.0 [masl] [masl] 3,500 Reservoir length Lres [-] Number of reservoir compartments ncomp Automatic or manual discritization of reservoir in compartments Automatic

Approximation of reservoir geometry

Specification of hydrological data

Water inflow

- Mean Annual Runoff (MAR)
 MAR = 2,950,000,000 m³/a:
 MAR = 75 m³/s
- Standard deviation of annual flows
 sd = 450,000,000 m³
- Coefficient of variability
 Cv = MAR / sd
 Cv = 2,950,000,000 / 450,000,000

Cv = 0.19

THE WORLD BANK

Specification of hydrological data

Sediment Inflow

- Total Sediment Inflow (MAS)
 Suspended & bedload
 MAS = 6.2 million t/a
- Composition of suspended load
 Silt & sand
- % of bedload in total load
 pb = 8%

THE WORLD BANK

psa [%] Fractional content of sand in suspended sediment inflow 32%

Specification of hydrological data

Intrannual distribution of water & sediment inflow

- Wet Season: Mid. November Mid April
 5 Months (40% of the year)
 - Sediment Inflow: 80% of MASs + bedload
 - Water inflow: 60% of MAR
- Dry Season: Mid April Mid. November
 7 months (60% of the year)
 - Sediment Inflow: 20% of MASs
 - Water inflow: 40% of MAR

